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Accessible points, harmonic measure,

and the Riemann mapping
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Abstract. Let n > 2. Let D be a bounded domain in R™. We provide a bird’s-
eye view of the relation between harmonic measure in D, the nature of the set
of boundary accessible points of D, and, if n = 2 and D is simply connected,
the Riemann mapping of D. We prove new results and give new, easier proofs
of known results. We prove in various ways that the set of boundary accessible
points of D (which is not necessarily Borel set if n > 2) is indeed measurable
for harmonic measure. We also establish precisely for which sets the pullback of
harmonic measure under the Riemann mapping is equal to the Lebesgue measure.
Sommario. Sia n > 2. Sia D un dominio limitato in R®. Presentiamo una
veduta d’insieme della relazione tra la misura armonica relativa a D, la natura
dell’insieme dei punti del bordo di D che sono accessibili, e, quando n = 2 e D
¢ semplicemente connesso, ’applicazione di Riemann di D. Dimostriamo nuovi
risultati e offriamo nuove, pilt semplici dimostrazioni di risultati noti.

This paper is in definitive form and no version of it will be published elsewhere.
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1 Introduction

Let n > 2 be an integer, and let D be a bounded, connected, and open subset of
R™. In this paper we provide a bird’s-eye view of the relation between

1. harmonic measure in D;

2. the nature (in the sense of descriptive set theory) of the set of boundary
points which are accessible from D;

3. the Riemann mapping of D (when n = 2 and D is simply connected).

Moreover, we prove new results and give new, easier proofs of known theorems.

2 Main Results

The geometric boundary of D is denoted by dD. Harmonic measure for D (with
a given pole) is a particular measure defined on 8D. One of our concerns is given
by the following question:

For which subsets of 8D is harmonic measure well defined?

We adopt the following notation:

B(0D) is the o-algebra of Borel subsets of 8D;

C(0D) is the Banach space of real-valued continuous functions on dD;

C*(9D) is the dual of C(8D);

C%(0D) is the cone of positive linear functionals on C(8D);

h(D) is the vector space of real-valued functions defined and harmonic on D;

U is the open disc in R? of radius one, centered at the origin.

Recall that there exists a unique function! w: D — C*(8D) such that (here we
write w, for w(z))

e for each z € D, w, actually belongs to C3(0D); this means that w, is a
positive measure defined on the Borel o-algebra B(9D) of dD;

e for each f € C(0D), [, f(w)w.(dw) is a harmonic function of z € D;

e for “most” points w € 0D, limps,_,,, w, = 0, in the weak-star topology,
where &, € C*(0D) is the Dirac measure on 8D concentrated at w.

1See Appendix A for a more precise definition.
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The positive Borel measure w, on 9D is called the harmonic measure for D with
pole at z. If we need to emphasize the dependence of w, on the domain D, we
write

wz(A | D) (1)

instead of w,(A), where A C 8D is Borel.

As a matter of fact, (1) turns out to be naturally defined not only when A belongs
to B(0D), the Borel o-algebra of D, but also when A belongs to the o-algebra
generated by B(OD) together with the subsets of Borel subsets of 8D of zero har-
monic measure. Let us denote by Rap this o-algebra.? Then A belongs to Rsp
if and only if it can be written as

A=A, UA, . ()

where A, € B(0D) and A, C 8D is a null set with respect to harmonic measure,
i.e., there exists a set N € B(0D) whose harmonic measure equals zero and such
that N O A,. Now, the position

w,(A|D)=w,(Ay | D) (3) .

is a well-defined measure on Rsp, independent of the particular decomposition
used in (2). The Borel o-algebra B(OD) is strictly contained in Rsp, and the
position in (3) determines as extension of w, from B(8D) to Rsp. This extension
is also denoted (with slight abuse of language) by w,, as in (3). A subset A of 6D
is measurable with respect to harmonic measure for D precisely when A € Rsp.
Hence if A is a subset of D, then we may meaningfully evaluate its harmonic
measure w,( A | D) precisely when A € Rgp, for only in this case is the expression
wz( A | D) well-defined. The o-algebra Rsp is independent of z, because if A is
Borel then the function z € D + w,(A) is a (positive) harmonic function.

Example: The Unit Disc. The harmonic measure for the unit disc U with
pole at 0 s the normalized Lebesgue measure on its boundary (normalized so that
the measure of OU is 1), and the o-algebra Ray is that of Lebesgue measurable
sets, generated by the Borel sets and the subsets of Borel subsets of OU of zero
Lebesgue measure.

Since Rap is strictly larger than B(0D), we may have to evalute the harmonic
measure of sets which are actually not Borel, and, in these cases, we first have to
show that they belong to Rsp.

2In other words, the o-algebra Rop is the measure-theoretic completion of B(6D) under
harmonic measure.
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The following result is very useful in dealing with these measurability issues.
Recall that an analytic subset of 9D is the continuous image of a Borel set in
a Polish space. Every Borel set is analytic, but there are analytic sets that are
not Borel.? See for example [2] or [11] for background. The relevance of analytic
sets in potential theory and harmonic analysis is due to the fact that they are
universally measurable, and therefore, in particular, measurable with respect to
harmonic measure. The following result makes this statement more precise.

Theorem 1. If A C 0D is an analytic set, then it is measurable with respect to
harmonic measure for D, i.e., it belongs to Rap.

Proof. The result is an immediate consequence of the following theorem, due to
Lusin and Sierpinski, a proof of which can be found in [6, p.751].

~ Theorem. Let X be a compact metric space, and let u be a finite
measure defined on the o-algebra B(X) of Borel subsets of X. Let
S C X be an analytic set. Then S belongs to the measure-theoretic
completion of B(X) with respect to u, i.e., to the o-algebra of sets
generated by B(X) and the subsets of u null sets.

A ccessible points

An important portion of the boundary of D is the set of points w € 8D such
that there exists a half-closed Jordan arc contained in D and ending at w. These
points are called accessible from the inside of D. We denote by 8,(D) the set of
points in the boundary of D which are accessible from the inside of D. In other
words, if w € 8D, then w € 6,(D) if and only if

w = 131%11133(3), z:[0,1) — D, (4)
where z is continuous. One may suppose that the function z is injective; see [10].
One does not assume that the path described by z is rectifiable. We say that the
path z ends at w if (4) holds. The set 8,D is dense in 9D; see [14] for n = 2.
The questions are:

Is 0,D a Borel set? Does it belong to Rop?

We shall see that the answer to the first question depends on n, the dimension
of the ambient space. Indeed, 8,(D) is a natural example of a boundary set such
that

3Lebesgue wrote that the projection on the z-axis of a Borel subset of R? must obuviously be
Borel. Suslin showed that this claim is false.
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e if n > 2, it is not necessarily Borel.
e it is measurable with respect to harmonic measure.

The following result shows that Theorem 1 is not only useful, but, for n > 2,
even essential in order to show that 0,(D) € Rap.

Theorem 2. Ifn > 2, there is a bounded, connected, open set D C R™ such that
0,D is not Borel.

Proof. Recall that Urysohn and Nikodym constructed a closed set F' C R® such
that the set of all the points in F, which are accessible, from the outside of
F', along a Jordan half-closed arc, is not a Borel set. This construction can be
adapted to show the existence of a domain D C R? such that 8,D is not Borel.
See also [18]. O

Theorem 3. The set 0,(D) is an analytic set.

Proof. Let N be the set of positive integers, endowed with the discrete topology-
Recall that the Baire space N is the set NN of sequences of positive integers,
endowed with the product topology. Every x € NV is a function x : N — N, and
if k € N, then x(k) € N is called the k™ -component of z. Subsets of R? of the
form

{y e R?: there exists x € N such that (x,7) € R} ,

where R is some Borel subset of N xR¢, are analytic sets; they are not necessarily
Borel. Fix bijective maps f : N — QN[0,1) and g : N — Q*ND. Observe that
if y € 0D then y € 9,D if and only if there is a continuous function z : [0,1) — D
ending at y and such that z(f(n)) € Q* for each n € N. Indeed, it suffices to
choose a polygonal path ending at y consisting of straight line segments whose
endpoints have rational coordinates. Let C be the set of continuous functions
z : [0,1) — D such that z((f(n)) € Q* for every n € N. Consider the injective
function ‘

C—N,ze=a',  2'k)=g7'=(f(K) (keN), (5)

and denote by C C NV the set {z* : x € C}. Observe that

c=(1NU N B,

keENIEN heN peA’I:

where

A= {pe a1t - il < 1 |
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and

Bir) = {x A7 lgx(k) — ox(a)] < 7}

Since the sets Bi(p) C N are open, C is Borel. If (x,y) € N/ xR? then we say
that x ends at y if x = z* for some z € C such that z ends at y. Let

w=nU N w
nENheNpeZ(h)

where
2 = {pe N 11) — 11 < 1 } 2 = {x ) e AR o) ol < £

Then W C N xR¢ is Borel, since the sets W2 C N xR? are open. Observe that
if x € C then (x,y) € W if and only if x ends at y. Therefore

&D = {y € R*: there exists x € N such that (x,y) € R},

where

R=(C xRHN N xD)NW.
It follows that 8,D is analytic, since R is a Borel subset of N xR O
The following result follows at once.

Proposition 1. The set 0,(D) is measurable with respect to harmonic measure.

We shall see that, if n = 2, then more is true: 6,D is Borel. However, no
elementary proof of this fact exists, as far as we know. It would be nice to find
one. o

However, using conformal mapping arguments, we will give a direct proof of
Proposition 1 in the case n = 2. This proof is independent of the theory of
analytic sets and, in particular, independent of Theorems 1 and 3.

Other notions of accessibility

The notion of accessibility employed in this work should not be confused with
the one discussed by P. Urysohn [26]. If S C R¢, the points y € S, such that

B = liﬁlx(s), where z : [0,1) — R*\ S is continuous,

are called accessible from R?\ S. Denote by U(S) the set of all points of S which
are accessible from R?\ S.
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Observe that, if D C R? is a bounded, open and connected, then
6,D CcU(0D) C 6D

(where both inclusions may be strict).
It would be interesting to find an elementary proof of the following result, due to
Mazurkiewicz.

Theorem (Mazurkiewicz 1936) [15]. If C C R? is compact, then U(C) is
Borel.

The proof of the following result (Proposition 2) is based on Mazurkiewicz’s
Theorem.

Proposition 2. If n =2 then 8,D is Borel.

Proof. 1t suffices to observe that, if B is an open ball such that B O D, then
8D =U(B\ D)\ 8B, (6)
and then apply Mazurkiewicz’s result. O

A direct, elementary proof of Proposition 2, independent of Mazurkiewicz’s The-
orem, would be of independent interest.4

The non-elementary nature of Mazurkiewicz’s theorem can also be seen from the
following result, due to Urysohn.

Theorem (Urysohn 1925). There exist
e o Gs set Q C R? such that U(Q) is not an analytic set.
e a closed set F C R?® such that U(F) is not a Borel set.
If F C R™ is closed, then U(F) is an analytic set.

In particular, Urysohn proved that, if n > 2, and F C R™ is closed, then U(F) is
an analytic set but it is not necessarily Borel.

Observe that (6), coupled with this theorem of Urysohn, together imply Theo-
rem 3. Our proof of Theorem 3 is new, simpler, and independent.

4Observe that a proof of Proposition 2 has been given in [3, p.481] using a more difficult
argument, based on conformal mappings. See also [4].
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The accessibile-points operator

All these notions may be subsumed under just one operator. A point w € R™ s
accessible from S C R™ if w = limgyy ¢(s) for a continuous and injective function
c:[0,1) — S. The set of all points in R™ which are accessible from S is denoted
by A(S). Then

US)=5Sn AR"\ 9)

and
6,D = 0D N A(D).

Rectilinear accessibility

The notion of accessibility employed in this work should not be confused with that
of rectilinear accessibility, introduced in [26] and also discussed for example in [2]
and in [18]. See also [24]. Recall that a point y € dD is said to be rectilinearly
accessible from R\ 9D if

y= liglx(s), where z : [0,1) — R?\ 8D and z(s) = z + sw for some w, z € R%.

This notion appears to have little interest from the point of view of potential
theory. Urysohn proves that for a closed set the set of rectilinearly accessible
points is an analytic set as well. One can easily prove this fact by methods
similar to those of the proof of theorem 3.

The Riemann mapping

Theorem (Riemann 1851) [22]. If D C R? is bounded, open, connected, and
simply connected, then there exists a surjective and conformal mapping

p:U— D,

where U is the unit disc U & {zeC: |z <1}

The function ¢ is called a Riemann mapping of D. A Riemann mapping of D
induces a correspondence between AU and dD: More precisely, the function

cpl,:M——>3D,

(where U C 9U is a certain Borel subset of full Lebesgue measure) is defined in
terms of the angular limiting values of ¢. More precisely, the set ¢ is defined
in terms of the following notion, which is basic for the boundary behaviour of
functions f : U—C. A point ¢ € dU is a Fatou point of f : U — Cif f has
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an angular limit at (, i.e., if f(z) converges to some limit, which may be oo, and
which is denoted by f,(¢), as z € U converges to ¢ inside triangles, contained in
U, having vertex at (; see [5]. The set of all Fatou points of f is denoted by U(f).

Lemma ([20], p.131). IfU I, C is continuous then
U(f) is a Borel subset of OU. (7)

Fatou’s Theorem ([7]). If p : U — C is a bounded analytic function, then the
set OU\U(p) has zero Lebesgue measure.

We write U = U(p)
Direct images. If ¢ is a Riemann mapping of D C R?, and U C 8U, then the
direct tmage of U under ¢ is the subset of 0D given by

0.[U] E {0,(¢): ¢ e UNU} C 8D.

See [16].
Observe that the function ¢, is not, in general, surjective. The direct image of
OU is independent of ¢, and it has an intrinsic meaning.

Lemma ([20] Theorem 4.3, [14] Theorems I11.2.6 and II1.2.7.). If ¢ is a Riemann
mapping of D C R2, then

Inverse images. If ¢ is a Riemann mapping of D C R?, and A C 8D, then the
inverse image of A under ¢ is the subset of OU given by

def

¢ [Al = {wel: p,(w) e A} C IU.
We are interested in the following equality
woo (A | D) = wo( ¢[A]| V). ©)
The question is:

For which subsets A of 0D does (9) hold?
The left-hand side of (9) makes sense precisely when

A is measurable with respect to harmonic measure for D (A € Rsp)
while the right-hand side makes sense precisely when
¢*[A] is Lebesgue measurable. (¢*[A] € Rov)

The question is: Do we need to assume that both conditions hold, in order to be
able to deduce (9)? Are the conditions (A € Ryp) and (p*[A] € Rsy) equivalent?
Let us first review the known results.
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Theorem A. Let A C 0D. Then
A C 0D is Borel => ¢*[A] is a Borel subset of OU, and (9) holds.
A proof that
A C 0D is Borel => ¢*[A] is a Borel subset of dU (10)

can be found in [20, p.131]. This means that, if A C 8D is Borel, then both
sides of (9) are well-defined. A proof that (9) holds under the assumption that
A is Borel, can be found in [9, p.207]. Under the assumption that 8D is smooth
enough, this fact follows from the conformal invariance of harmonic functions.
The proof for arbitrary domains, without restrictions on their boundary smooth-
ness, is handled by a limiting argument.

An immediate consequence of Theorem A is the following:

Theorem B. Let AC 0D. Then
(A € Rop) = (¢*[A] € Rou), and (9) holds.

Theorem B follows at once from Theorem A using the fact that Rsp is the
measure-theoretic completion of B(0D) under harmonic measure. The details
are left to the reader.

In order to complete the picture, it suffices to prove the following statement.®

Theorem 4. Let A C 8D. Then

(¢*[A] € Ray) = (A € Rap).

Proof. The proof is based on the following:

Lemma 1. Let A C 0D. If ¢*[A] is Lebesgue measurable, and wo( o*[A]| U) < 1,

then for every sufficiently small € > 0 there exists an open set Ge C 8D such that
A C G, and

we)( Ge| D) < €+ wo( ¢*[A]| U).

5The result was stated, without proof, in [1]. As far as we know, the result has neither been
stated, nor proved, anywhere else. In an initial attempts to derive Theorem 4 from Theorem B
using purely measure-theoretic tools, we encountered Proposition 14 in [23, p. 341], which, if
true, could have been helpful. However, an example, due to Tim Steger [25], presented in
Appendix B, shows that Proposition 14 in [23, p. 341] is false.
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Proof. Let B = ¢*[A]. Let € > 0 be small enough. A Theorem of Lusin [23, p.74]
theorem implies that there exists a closed set F C U\ B such that

¢ the restriction of ¢, to F is continuous;
e wo(OU\B | U)—e<we(F| ).
It follows that ¢,[F] € 9D is closed, and, by Theorem A, that ¢*[p,[F]] is
Lebesgue measurable and that
wo( @[, [FIl | U) = wyo)( @ulFI | D).
Then the set G, < 8D \ ¢, [F] has the required properties. O

An immediate corollary of Lemma 1 is the following:

Lemma 2. Let A C 8D. Assume that ¢*[A] is Lebesgue measurable, and that
0 < wo( ¢*[A]| U) < 1. Then for every sufficiently small € > O there exist a closed
set F. C A and an open set G D A such that

we)(Ge\ Fe | D) <.

Now we are ready to prove Theorem 4.
First assume that
0 < wo(*[A]| U) < 1.

Then an application of Lemma, 2 yields a sequence of closed sets F,, C A and a
sequence of open sets G, D A such that wy)(Gn\ Fr | D) < 1/n. Then

A= (U,F,) U(A\U,F,)
where U,, F,, is Borel, and A\ U,, F,, is contained in

Nk (Gie \ Fr) -

The latter set is a Borel set of harmonic measure zero. Hence A is measurable
with respect to harmonic measure for D.
Now assume that

0 = wo(¢*[A]] U).

An application of Lemma 1 yields the existence of a sequence of open sets G,, C
0D containing A such that wy (G, | D) < 1/n. Therefore A is contained in
Nr Gr, and the latter is a Borel set and it has harmonic measure equal to zero.
Hence A is measurable with respect to harmonic measure for D.

The case where wo(*[A]| U) = 1 is treated by symmetry, since U \ ©*[A] is
equal to *[0D \ A]. O
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Observe that an immediate corollary of Theorem 4 is the following result, whose
interest lies in the fact that the proof we are able to give is independent of
Theorems 1 and 3, and also independent of Mazurkiewicz’s theorem.

Corollary 1. Ifn = 2 and D is simply connected, then 8,D is measurable with
respect to harmonic measure for D.

Proof. 1t suffices to apply Theorem 4 to the case A = 9,D, and observe that
¢*[6,D] =U. O

Appendix A

In this appendix we give a more precise definition of harmonic measure. The
original proof of the Riemann mapping theorem was based on potential-theoretic
tools, and reduced matter to the classical Dirichlet problem for D.

Regular functions for the Dirichlet problem. We say that f € C(OD) is
reqular on 0D, for the Dirichlet problem on D, if there is a (necessarily unique)
function u € h(D) such that

lim wu(z) = f(w) for allw e dD. (11)

Doz—w
The set of all functions in C(0D) regular on 8D is denoted by Cy(OD).

The maximum principle for harmonic functions implies that the classical solution

operator
def

C(8D) = h(D), f~ Pplf] ¥ u
is positive and linear, where Pp|f] is the (unique) function u appearing in the
definition of regularity. The set C,(0D) is a closed subspace of C(dD).
Cp(0D) ——— C(9D)

inclusion
i?
Pp v
h(D)

For some domains, not every boundary continuous function is regular. In these
cases, it is not possible to extend Pp to C(9D) and preserve (11), at the same
time.

Theorem (Zaremba 1911, Lebesgue 1912). There exist domains D for which
Cn(0D) is a proper subspace of C(0D). '
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See also [13]. The following result is remarkable. Indeed, it is plausible that an
extension of Pp to C(D) should exist, but no special meaning could a priori be
attached to it, if it were not unique: The uniqueness shows that the extension
has intrinsic meaning.®

Theorem (Keldysh 1945, Perron 1923, Remak 1924, Wiener 1924). The
classical solution operator Pp has one and only one positive and linear extension

to C(0D).

inclusion

Ch(8D) =—> C(8D)
Pp \g/HD
h(D)

The first constructions of the extension appear in [19], [21], [27], based on various
constructive methods. The uniqueness is due to Keldysh [12], a work which,
remarkably enough, is mostly ignored by the main treatises on potential theory
(see e.g. [6] and [9]). See [17] for a self-contained treatment.

Theorem (Kellogg 1928, Evans 1933). Let us denote by Hp be the unique
positive and linear extension of Pp to C(0OD). Then the points w € 0D for
which (11) fails, with w = Hp[f], form a set of capacity zero.

Let Hp be the unique positive and linear extension of Pp to C(dD). For each
z € D, there is a unique’ Borel measure w, on 8D such that

Hp(f)(2) = /8 fw)w.dw| D), Vf € C(D) (12)

The Borel measure w, is (by definition) the harmonic measure for D with pole
at 2.8 See [27].

Let us denote by D,, the set of all bounded, open, connected subsets of R®. The
set D, is partially ordered by the relation < defined as follows: Dy < Dy if
and only if D; C D, (where D denotes the closure of D). The set D, has a
natural topology (induced by the partial order <), that is useful when we look at

6Some authors introduce harmonic measure using the Hahn-Banach theorem, a method
which clearly does not yield uniqueness.

"See [8, Theorem (7.2) p. 205].

8 As observed in [8, p.208], the proof of the Riesz Representation Theorem yields a o-algebra
of measurable sets, which turns out to be precisely the completion of the Borel o-algebra. The
two approaches are perfectly equivalent.
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harmonic measure as a function of the domain. Indeed, the proof of Theorem A
rests on an approximation result where one makes an implicit use of this topology.
A basis of open sets in D,, is given by the intervals

(D1; Do) € {D € D : Dy < D < D}

for any D; and D, in D,, such that D; < Ds.

Appendix B

The following example, due to Tim Steger [25], shows that Proposition 14 [23,
p.341] is false.

Let A C [0,1] a set of Lebesgue outer measure equal to 1, such that [0,1] \ A has
Lebesgue outer measure equal to 1. Let v*(E) be defined as the Lebesgue outer
measure of the set £ N A. Then v* is an outer measure on [0,1], in the sense of
[23]. Let M be the o-algebra of all v*-measurable subsets of [0,1], and let v be
the restriction of v* to M. Then M contains all the Borel subsets of [0,1]. The
measure space ([0, 1], M, v) satisfies the hypothesis in Proposition 14 [23, p.341]
but not its conclusion.
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